Multiscale high-dimensional sparse Fourier algorithms for noisy data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Bounds for Sparse Pca with Noisy High-dimensional Data.

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the ris...

متن کامل

Bounds for Sparse Pca with Noisy High - Dimensional Data

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the ris...

متن کامل

A Multiscale Sub-linear Time Fourier Algorithm for Noisy Data

We extend the recent sparse Fourier transform algorithm of [1] to the noisy setting, in which a signal of bandwidth N is given as a superposition of k N frequencies and additive noise. We present two such extensions, the second of which exhibits a novel form of error-correction in its frequency estimation not unlike that of the β-encoders in analog-to-digital conversion [2]. The algorithm runs ...

متن کامل

An Efficient High-Dimensional Sparse Fourier Transform

We propose RSFT, which is an extension of the one dimensional Sparse Fourier Transform algorithm to higher dimensions in a way that it can be applied to real, noisy data. The RSFT allows for off-grid frequencies. Furthermore, by incorporating Neyman-Pearson detection, the frequency detection stages in RSFT do not require knowledge of the exact sparsity of the signal and are more robust to noise...

متن کامل

Fast discrete algorithms for sparse Fourier expansions of high dimensional functions

We develop a fast discrete algorithm for computing the sparse Fourier expansion of a function of d dimension. For this purpose, we introduce a sparse multiscale Lagrange interpolation method for the function. Using this interpolation method, we then design a quadrature scheme for evaluating the Fourier coefficients of the sparse Fourier expansion. This leads to a fast discrete algorithm for com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics, Computation and Geometry of Data

سال: 2020

ISSN: 2642-1909,2642-1917

DOI: 10.4310/mcgd.2020.v1.n1.a2